Аннотация:
В представляемой работе приводится построение полной системы независимых ротационно-инвариантных функциональных аргументов для лагранжиана нелинейного микрополярного (микроморфного) термоупругого континуума второго типа, который включает тензор конечной деформации Коши–Грина, температурное смещение, референциальный градиент температурного смещения, три вектора экстрадеформации и три несимметричных тензора экстрадеформации второго ранга. Дополнительные (экстра) реперы, связанные с микроэлементами, предполагаются нежесткими, что допускает наиболее общую аффинную экстрадеформацию микроэлементов континуума. Исходя из принципа наименьшего действия Гамильтона получены 4-ковариантные уравнения термоупругого поля в микрополярном континууме в канонической форме Эйлера–Лагранжа. Сформулированы дифференциальные и функциональные условия ротационной инвариантности плотности действия. Последние затем используются с целью поиска ротационно-инвариантных функциональных аргументов лагранжиана. Найдена система независимых ротационно-инвариантных функциональных аргументов лагранжиана. Дается формальное доказательство ее полноты. Построены удовлетворяющие принципу объективности формы определяющих уравнений гиперболического микрополярного термоупругого континуума, соответствующие ротационно-инвариантному лагранжиану.