Аннотация:
В данной работе рассматривается задача оптимального управления для уравнения теплопроводности с интегральным граничным условием. Управляющими функциями являются коэффициент и свободный член уравнения состояния, а также свободный член интегрального граничного условия. Коэффициент и свободный член уравнения состояния являются элементами пространства Лебега, а свободный член интегрального условия — элементом пространств Соболева. Функционал цели является финальным. Исследованы вопросы корректности постановки задачи оптимального управления в слабой топологии пространства управлений. Доказано, что в рассматриваемой задаче существует хотя бы одно оптимальное управление, множество оптимальных управлений слабо компактно в пространстве управлений, а любая минимизирующая последовательность управлений функционала цели слабо сходится к множеству оптимальных управлений. Доказана дифференцируемость по Фреше функционала цели на множестве допустимых управлений. Получены формулы для дифференциала градиента функционала цели. Установлено необходимое условие оптимальности в форме вариационного неравенства.