Аннотация:
Изучена начально-граничная задача для уравнения вынужденных колебаний консольно закрепленной балки. Такое линейное дифференциальное уравнение четвертого порядка описывает изгибные поперечные колебания однородной балки при воздействии внешней силы при отсутствии вращательного движения при изгибе.
Методом разделения переменных построена система собственных функций одномерной спектральной задачи, которая является ортогональной и полной в пространстве квадратично-суммируемых функций.
Единственность решения начально-граничной задачи доказана двумя способами — с применением интеграла энергии и с использованием свойства полноты системы собственных функций.
Решение задачи вначале найдено при отсутствии внешней силы и однородных граничных условиях, а затем рассмотрен общий случай при наличии внешней силы и неоднородных граничных условиях. В обоих случаях решение задачи построено в виде суммы ряда Фурье.
Получены оценки коэффициентов этих рядов и системы собственных функций.
На основании установленных оценок найдены достаточные условия на начальные функции, выполнение которых обеспечивает равномерную сходимость построенных рядов в классе регулярных решений уравнения колебаний балки, т.е. доказаны теоремы существования решения поставленной начально-граничной задачи.
Установлена устойчивость решений начально-граничной задачи в зависимости от начальных данных и правой части рассматриваемого уравнения в классах квадратично-суммируемых и непрерывных функций.