Аннотация:
В данной статье для дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольнике сформулирована начально-граничная задача. На основе метода разделения переменных к поставленной задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее исследованы равномерная сходимость некоторых билинейных рядов и порядок коэффициентов Фурье, зависящих от найденных собственных функций. Решение изучаемой задачи найдено в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.
Ключевые слова:дифференциальное уравнение в частных производных четного порядка, оператор Бесселя, начально-граничная задача, спектральный метод, функция Грина, интегральное уравнение, существование, единственность и устойчивость решения.