Аннотация:
Рассмотрена коэффициентная обратная задача определения геометрических
параметров продольного прямоугольного паза по собственным частотам изгибных колебаний прямоугольного стержня. Предполагается, что паз проходит не по всей длине, а от определенной точки до правого конца. Для решения задачи стержень с продольным пазом моделируется в виде двух стержней, причем первый не имеет паза, а второй имеет.
В месте соединения используются условия сопряжения, в которых приравниваются величины прогибов, углов поворота, изгибающие моменты и перерезывающие силы. Исследованы закономерности поведения собственных частот изгибных колебаний при изменении длины паза. Предложен метод решения, позволяющий определять искомые параметры по конечному числу собственных значений изгибных колебаний. Показано, что решение однозначно в случае использования частотных спектров относительно взаимно перпендикулярных осей.