RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Самарского университета. Естественнонаучная серия // Архив

Вестн. СамГУ. Естественнонаучн. сер., 2014, выпуск 10(121), страницы 68–73 (Mi vsgu450)

Математика

Линейно упорядоченное пространство, квадрат которого не уплотняется на нормальное пространство

О. И. Павлов

Российский университет дружбы народов, 117198, Российская Федерация, г. Москва, ул. Миклухо-Маклая, 6

Аннотация: Одна из центральных задач в теории уплотнений топологических пространств состоит в описании топологических свойств, которые можно улучшить путем уплотнения (т. е. непрерывного взаимно однозначного отображения). Большинство известных контрпримеров в этой области касается не наследственных топологических свойств. В данной статье построено счетно-компактное линейно упорядоченное (следовательно, монотонно нормальное, т. е. “очень сильно” наследственно нормальное) топологическое пространство, которое в квадрате и любой более высокой степени не уплотняется на нормальное пространство. Построенное пространство псевдокомпактно во всех степенях, что дополняет известный результат об уплотнениях непсевдокомпактных пространств.

Ключевые слова: уплотнение, нормальность, линейно упорядоченное пространство, псевдокомпактность, декартово произведение, монотонная нормальность, стоун-чеховская компактификация, плоскость Тихонова.

УДК: 515.122

Поступила в редакцию: 26.05.2014



© МИАН, 2024