Аннотация:
Данная работа посвящена многообразиям алгебр Лейбница над полем нулевой характеристики. В случае нулевой характеристики основного поля вся информация о многообразии содержится в пространстве полилинейных элементов его относительно свободной алгебры. Полилинейная компонента многообразия рассматривается как модуль симметрической группы и раскладывается в прямую сумму неприводимых подмодулей, сумма кратностей которых называется кодлиной многообразия. В работе исследуются тождества, выполняющиеся в многообразиях с конечной кодлиной, а также взаимосвязь таких многообразий с известными многообразиями алгебр Ли и Лейбница, обладающими указанными свойствами. Доказывается необходимое и достаточное условие конечности кодлины многообразия алгебр Лейбница.