RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия // Архив

Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 2024, том 11, выпуск 1, страницы 38–47 (Mi vspua278)

К 300-ЛЕТИЮ СПБГУ

Периодические возмущения осцилляторов на плоскости

Ю. Н. Бибиков, Е. В. Васильева

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7-9

Аннотация: Представлен обзор результатов исследований, выполненных в текущем столетии на кафедре дифференциальных уравнений Санкт-Петербургского государственного университета. Изучается проблема устойчивости нулевого решения уравнения второго порядка, описывающего периодические возмущения осциллятора с нелинейной восстанавливающей силой при обратимых и консервативных возмущениях. Такие возмущения относятся к трансцендентным возмущениям, при которых для решения вопроса об устойчивости необходимо учитывать все члены разложения правой части уравнения в ряд. Задача об устойчивости при трансцендентных возмущениях была поставлена в 1893 г. А. М. Ляпуновым. Представленные в данной статье результаты по устойчивости осциллятора проводились методами КАМ-теории: рассмотрены возмущения осциллятора с бесконечно малой и бесконечно большой частотой колебаний; даны условия наличия квазипериодических решений в любой окрестности временной оси, откуда следует устойчивость (не асимптотическая) нулевого решения возмущенного уравнения; даны условия устойчивости нулевого решения гамильтоновой системы с двумя степенями свободы, невозмущенная часть которой описывается парой осцилляторов (в этом случае рассматриваются консервативные возмущения).

Ключевые слова: гармонический осциллятор, устойчивость, теория КАМ, консервативные возмущения, обратимые возмущения, гамильтонова система, квазипериодические решения.

УДК: 517.925.42

MSC: 34D10, 34D20

Поступила в редакцию: 15.02.2023
Исправленный вариант: 16.05.2023
Принята в печать: 31.08.2023

DOI: 10.21638/spbu01.2024.102



© МИАН, 2025