Аннотация:
В настоящей работе выполняется построение и исследование модели связанных плоско-поперечных колебаний круглой тонкой пластинки с концентричным отверстиемпри действии кориолисовых и центробежных сил инерции, вызванных вращение мсистемы вокруг оси, расположенной в плоскости пластинки. Уравнения колебаний в частных производных получены с применением вариационного принципа Гамильтона - Остроградского. В предположении малости угловой скорости вращения по отношению к частоте рабочей кососимметричной изгибной формы колебаний пластинки найдено приближенное аналитическое решение как для радиальной и окружной, так и для поперечной компонент поля перемещений в режиме свободных колебаний. С помощью проекционного метода Галеркина задача была сведена к системе двух линейных дифференциальных уравнений второго порядка для модальных координат взаимно ортогональных базисных кососимметричных форм колебаний пластинки. Обнаружено, что режимначально возбужденных гармонических колебаний при наличии вращения преобразуется в режим амплитудно-модулированных биений. Найдены аналитические выражения как для частоты медленной огибающей биений, так и для относительной глубины их амплитудной модуляции. Показана принципиальная возможность определения модуля проекции вектора угловой скорости на плоскость пластинки по измеряемой величине частоты огибающей. Исследована задача о выборе оптимальной геометрической формы резонатора с точки зрения максимизации чувствительности системы к изменениям величины угловой скорости вращения. Рассмотрен вопрос об определении направления проекции вектора угловой скорости на плоскость пластинки по измеряемой глубине амплитудной модуляции режима биений.