Аннотация:
Изучается диффеоморфизм плоскости в себя с неподвижной гиперболической точкой и нетрансверсальной гомоклинической к ней точкой. Известны различные способы касания устойчивого и неустойчивого многообразия в гомоклинической точке. Периодические точки, траектории которых не покидают окрестность траектории гомоклинической точки, делятся на счетное множество типов. Периодические точки, принадлежащие одному типу, называются n-обходными, если их траектории имеют n витков, которые лежат вне достаточно малой окрестности гиперболической точки. Ранее в статьях Ш. Ньюхауса, Л.П.Шильникова, Б. Ф.Иванова и других авторов изучались диффеоморфизмы плоскости с нетрансверсальной гомоклинической точкой, предполагалось, что эта точка является точкой с конечным порядком касания. В этих работах показано, что в окрестности гомоклинической точки могут лежать бесконечные множества устойчивых двухобходных и трехобходных периодических точек. Наличие таких множеств зависит от свойств гиперболической точки. В данной работе предполагается, что гомоклиническая точка не является точкой с конечным порядком касания устойчивого и неустойчивого многообразия. В работе показано, что при любом фиксированном натуральном n окрестность нетрансверсальной гомоклинической точки может содержать бесконечное множество устойчивых n-обходных периодических точек с отделенными от нуля характеристическими показателями.