Аннотация:
Классическое интегральное неравенство Левина–Стечкина известно с 1948 г. В статье получены более сложные и точные неравенства, с помощью которых можно получить верхнюю и нижнюю границы интеграла от произведения двух вещественных функций, используя обобщенные коэффициенты Фурье каждой из этих функций отдельно. Коэффициенты Фурье вычисляются по определенной чебышевской системе функций и предполагается, что упомянутые вещественные функции, добавленные к указанной системе, сами образуют чебышевские системы. Предполагается также, что все функции в чебышевских системах взаимно ортогональны, как это принято при доказательстве неравенства Левина–Стечкина. Результат сформулирован в виде теоремы, которая иллюстрируется пятью примерами. В двух примерах чебышевскими системами являются ортогональные полиномы на конечных интервалах, в двух следующих конкретизируются упомянутые функции и показано, что, увеличивая число коэффициентов Фурье, можно заключить исходный интеграл в сужающуюся вилку из нижней и верхней границ. Последний пример показывает, как использовать теорему для оценки дисперсии числа нулей гауссовского стационарного процесса. Библиогр. 9.
Ключевые слова:интеграл от произведения двух вещественных функций, неравенства типа Левина–Стечкина, чебышевские системы функций, обобщенные коэффициенты Фурье.