RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2016, выпуск 3, страницы 73–87 (Mi vspui300)

Эта публикация цитируется в 2 статьях

Прикладная математика

Взаимодействие эллиптического отверстия с межфазной границей двух полуплоскостей

В. М. Мальков, Ю. В. Малькова, Р. Р. Петрухин

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

Аннотация: Задачи теории упругости для композитных материалов с отверстиями и включениями имеют большое практическое значение для механики, физики и других областей науки. В работе получено аналитическое решение плоской задачи (плоская деформация или плоское напряженное состояние) для неоднородной пластины с эллиптическим отверстием. Пластина образована соединением двух полуплоскостей из разных материалов, отверстие расположено целиком в нижней полуплоскости. На бесконечности пластины известны напряжения и углы поворота, на границе отверстия задана внешняя нагрузка. Для решения задачи использованы методы комплексных потенциалов Колосова–Мусхелишвили, конформных отображений и суперпозиции. Близость отверстия к границе раздела сред оказывает существенное влияние на величину напряжений как в окрестности отверстия, так и на линии раздела. Для инженерных приложений важно знать поля напряжений и перемещений, чтобы оценить влияние отверстия на прочность соединения материалов. Из общего решения рассмотренной задачи вытекают как частные случаи решения задач об эллиптическом отверстии в полуплоскости, о наклонной трещине в двухкомпонентной плоскости и полуплоскости и ряд других. Выполнены расчеты напряжений на линии раздела для различных параметров упругости полуплоскостей, исследовано влияние близости отверстия на величину этих напряжений. Библиогр. 19 назв. Ил. 2.

Ключевые слова: кусочно неоднородная пластина, плоская задача упругости, эллиптическое отверстие, метод комплексных функций.

УДК: 539, 517.5

Поступила: 14 марта 2016 г.
Принята к печати: 26 мая 2016 г.

DOI: 10.21638/11701/spbu10.2016.307



Реферативные базы данных:


© МИАН, 2024