RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2018, том 14, выпуск 2, страницы 116–130 (Mi vspui362)

Эта публикация цитируется в 1 статье

Прикладная математика

Прямое решение минимаксной задачи размещения в прямоугольной области на плоскости с прямоугольной метрикой

П. В. Плотников, Н. К. Кривулин

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

Аннотация: Рассматривается минимаксная задача размещения точечного объекта на плоскости с прямоугольной (манхэттенской) метрикой с ограничениями на допустимую область размещения и предлагается ее прямое аналитическое решение при помощи методов тропической (идемпотентной) математики. При отсутствии ограничений эта задача, которая также известна как задача Ролса или задача посыльного, имеет известные геометрическое и алгебраическое решения. Исследуется решение данной задачи с учетом дополнительных ограничений на область размещения, которая задана в форме прямоугольника. Сначала задача записывается в терминах тропической математики как задача тропической оптимизации, вводится параметр для обозначения минимума целевой функции и задача сводится к решению параметризованной системы неравенств. Эта система решается относительно одной из переменных, а условия существования решений используются для нахождения оптимальных значений другой переменной с помощью вспомогательной задачи оптимизации. Затем полученное общее решение преобразуется в набор прямых решений, записанных в компактной замкнутой форме для различных случаев соотношений между исходными параметрами задачи. Приведены графические примеры решения задачи для разных вариантов расположения допустимой области размещения на плоскости.

Ключевые слова: задача размещения Ролса, размещение с ограничениями, прямоугольная метрика, идемпотентное полуполе, тропическая оптимизация, полное решение.

УДК: 519.87

MSC: 90B85, 15A80, 65K05, 90C48

Поступила: 27 декабря 2017 г.
Принята к печати: 15 марта 2018 г.

DOI: 10.21638/11701/spbu10.2018.204



Реферативные базы данных:


© МИАН, 2024