Аннотация:
Рассматриваются некоторые классы непрерывных и дискретных обобщенных вольтерровских моделей популяционной динамики. Предполагается, что между любыми двумя видами в биологическом сообществе установлены отношения типа «симбиоз», «компенсализм» или «нейтрализм». Цель работы — получение условий, при выполнении которых изучаемые модели обладают свойством конвергенции. Это означает, что исследуемая система имеет ограниченное решение, которое асимптотически устойчиво в целом. Для вывода требуемых условий используются подход В. И. Зубова и его дискретный аналог. Предлагаются способы построения функций Ляпунова, с помощью которых проблема конвергенции для рассматриваемых моделей сводится к вопросу о существовании положительных решений некоторых систем линейных алгебраических неравенств. В случае, когда параметры моделей являются почти периодическими функциями, выполнение полученных условий гарантирует, что предельные ограниченные решения также будут почти периодическими. Приводится пример, иллюстрирующий установленные теоретические выводы.
Ключевые слова:динамика популяций, конвергенция, почти периодические колебания, асимптотическая устойчивость, функции Ляпунова.