RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления // Архив

Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 2022, том 18, выпуск 4, страницы 443–453 (Mi vspui547)

Прикладная математика

Условия конвергенции непрерывных и дискретных моделей популяционной динамики

А. Ю. Александров

Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9

Аннотация: Рассматриваются некоторые классы непрерывных и дискретных обобщенных вольтерровских моделей популяционной динамики. Предполагается, что между любыми двумя видами в биологическом сообществе установлены отношения типа «симбиоз», «компенсализм» или «нейтрализм». Цель работы — получение условий, при выполнении которых изучаемые модели обладают свойством конвергенции. Это означает, что исследуемая система имеет ограниченное решение, которое асимптотически устойчиво в целом. Для вывода требуемых условий используются подход В. И. Зубова и его дискретный аналог. Предлагаются способы построения функций Ляпунова, с помощью которых проблема конвергенции для рассматриваемых моделей сводится к вопросу о существовании положительных решений некоторых систем линейных алгебраических неравенств. В случае, когда параметры моделей являются почти периодическими функциями, выполнение полученных условий гарантирует, что предельные ограниченные решения также будут почти периодическими. Приводится пример, иллюстрирующий установленные теоретические выводы.

Ключевые слова: динамика популяций, конвергенция, почти периодические колебания, асимптотическая устойчивость, функции Ляпунова.

УДК: 517.925.51

MSC: 37N25

Поступила: 23 апреля 2022 г.
Принята к печати: 1 августа 2022 г.

DOI: 10.21638/11701/spbu10.2022.401



© МИАН, 2024