Аннотация:
Возросшая сложность будущих сетей беспроводной связи 5G представляет собой фундаментальную проблему для оптимального распределения ресурсов. Эта непрерывная, ограниченная задача оптимального управления должна решаться в режиме реального времени, поскольку распределение мощности должно соответствовать мгновенно меняющемуся состоянию канала. В статье особое внимание уделяется применению глубокого обучения для разработки решений проблем распределения радиоресурсов в системах с несколькими входами и несколькими выходами. Контролируемая модель глубокой нейронной сети представлена в сочетании с оптимизацией роя частиц для решения проблемы с использованием эвристически сгенерированных данных. Мы обучаем модель и оцениваем ее способность точно прогнозировать решения по распределению ресурсов. Результат моделирования показывает, что хорошо обученная предложенная модель может обеспечить почти оптимальное решение.
Ключевые слова:системы с несколькими входами и несколькими выходами, глубокие нейронные сети, эвристика, оптимизация роя частиц.