Аннотация:
Исследуется вопрос о существовании решения задачи Коши для дифференциального уравнения, не разрешенного относительно производной неизвестной функции. Рассматриваются дифференциальные уравнения, порожденные дважды непрерывно дифференцируемыми отображениями. Приведен пример, показывающий, что предположения регулярности отображения в каждой точке определения недостаточно для разрешимости задачи Коши. Введено понятие равномерной регулярности рассматриваемых отображений. Показано, что предположение равномерной регулярности является достаточным для локальной разрешимости задачи Коши при любых начальных данных в классе непрерывно дифференцируемых функций. Показано, что если отображение, определяющее дифференциальное уравнение, мажорируется отображениями специального вида, то решение рассматриваемой задачи Коши продолжаемо на заданный интервал времени. Рассмотрен случай липшицевой зависимости от фазовой переменной отображения, определяющего уравнение. Для этого случая найдены оценки непродолжаемых решений задачи Коши. Проведено сравнение полученных результатов с известными ранее. Показано, что в предположениях доказанной теоремы существования решения единственность решения для рассматриваемых задач не характерна. Приведен пример, иллюстрирующий существенность предположения равномерной невырожденности для утверждения о существовании локального решения и для утверждения о продолжении решения на заданный интервал времени.