Аннотация:
В работе рассматривается смешанная задача для метагармонического уравнения в области в цилиндре прямоугольного сечения. На боковых гранях цилиндрической области заданы однородные условия первого рода. Цилиндрическую область с одной стороны ограничивает поверхность общего вида, на которой заданы условия Коши, т. е. заданы функция и ее нормальная производная. Другая граница цилиндрической области - плоская - свободна. Такая задача некорректно поставлена, и для построения ее приближенного решения в случае данных Коши, известных с некоторой погрешностью, необходимо применение регуляризирующих алгоритмов. В работе рассматриваемая задача сведена к интегральному уравнению Фредгольма первого рода. На основе решения интегрального уравнения получено явное представление точного решения поставленной задачи. Устойчивое решение интегрального уравнения получено методом регуляризации Тихонова. В качестве его приближенного решения рассматривается экстремаль функционала Тихонова. На основе этого решения строится приближенное решение задачи в целом. Приведена теорема сходимости приближенного решения поставленной задачи к точному при стремлении к нулю погрешности в данных Коши и при согласовании параметра регуляризации с погрешностью в данных. Результаты работы могут быть использованы для математической обработки данных тепловидения в медицинской диагностике.
Ключевые слова:некорректно поставленная задача, метагармоническое уравнение, интегральное уравнение первого рода, метод регуляризации Тихонова.