Аннотация:
Рассматривается регуляризация классических условий оптимальности в выпуклой задаче оптимального управлении для линейной системы обыкновенных дифференциальных уравнений с поточечными фазовыми ограничениями типа равенства и неравенства, понимаемыми как ограничения в гильбертовом пространстве суммируемых с квадратом функций. Множество допустимых управлений задачи по традиции вкладывается также в пространство суммируемых с квадратом функций. Однако целевой функционал оптимизационной задачи не является, вообще говоря, сильно выпуклым. Получение регуляризованных классических условий оптимальности основано на приеме, связанном с использованием двух параметров регуляризации. Один из них «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем добавке к целевому функционалу исходной задачи. Основное предназначение получаемых регуляризованных принципа Лагранжа и принципа максимума Понтрягина - устойчивое генерирование минимизирующих приближенных решений в смысле Дж. Варги для целей практического решения рассматриваемой задачи оптимального управлений с поточечными фазовыми ограничениями.