RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2014, выпуск 4, страницы 53–63 (Mi vuu450)

Эта публикация цитируется в 6 статьях

МАТЕМАТИКА

О свойстве равномерной полной управляемости линейной управляемой системы с дискретным временем

В. А. Зайцев, С. Н. Попова, Е. Л. Тонков

Кафедра дифференциальных уравнений, Удмуртский государственный университет, 426034, Россия, г. Ижевск, ул. Университетская, 1

Аннотация: Исследовано свойство равномерной полной управляемости (по Калману) линейной управляемой системы с дискретным временем
\begin{equation} x(t+1)=A(t)x(t)+B(t)u(t),\quad t\in\mathbb N_0,\quad (x,u)\in\mathbb R^n\times\mathbb R^m. \end{equation}
Установлено, что если система (1) равномерно вполне управляема, то матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$ (т.е. $\sup_{t\in\mathbb N_0}(|A(t)|+|A^{-1}(t)|)<+\infty$), а матрица $B(\cdot)$ ограничена на $\mathbb N_0$. Доказано, что система (1) равномерно вполне управляема тогда и только тогда, когда при некотором $\vartheta\in\mathbb N$ при всех $\tau\in\mathbb N_0$ для матриц
\begin{gather*} W_1(t,\tau)\doteq\sum_{s=\tau}^{t-1}X(t,s+1)B(s)B^*(s)X^*(t,s+1),\\ W_2(t,\tau)\doteq\sum_{s=\tau}^{t-1}X(\tau,s+1)B(s)B^*(s)X^*(\tau,s+1) \end{gather*}
выполнены неравенства $\alpha_1I\leqslant W_1(\tau+\vartheta,\tau)\leqslant\beta_1I$, $\alpha_2I\leqslant W_2(\tau+\vartheta,\tau)\leqslant\beta_2I$ с некоторыми положительными $\alpha_i$ и $\beta_i$. На основании этого утверждения доказан критерий равномерной полной управляемости системы (1), аналогичный критерию Тонкова равномерной полной управляемости систем с непрерывным временем: система (1) $\vartheta$-равномерно вполне управляема тогда и только тогда, когда матрица $A(\cdot)$ вполне ограничена на $\mathbb N_0$; матрица $B(\cdot)$ ограничена на $\mathbb N_0$; существует число $\ell=\ell(\vartheta)>0$ такое, что для любого $\tau\in\mathbb N_0$ и для любого $x_1\in\mathbb R^n$ существует управление $u(t)$, $t\in[\tau,\tau+\vartheta)$, которое переводит решение системы (1) из точки $x(\tau)=0$ в точку $x(\tau+\vartheta)=x_1$, при этом выполнено неравенство $|u(t)|\leqslant\ell|x_1|$, $t\in[\tau,\tau+\vartheta)$.

Ключевые слова: линейная управляемая система, дискретное время, равномерная полная управляемость.

УДК: 517.977.1+517.929.2

MSC: 93B05, 93C05, 93C55

Поступила в редакцию: 15.08.2014



© МИАН, 2025