Аннотация:
Результаты исследований Е. Л. Тонкова и Е. А. Панасенко распространяются на дифференциальные уравнения и управляемые системы с импульсным воздействием. В терминах функций Ляпунова и производной Кларка получены теоремы сравнения для систем с импульсным воздействием. Рассматривается множество $\mathfrak M\doteq\bigl\{(t,x)\in[t_0,+\infty)\times\mathbb R^n\colon x\in M(t)\bigr\}$, заданное непрерывной функцией $t\to M(t)$, где для каждого $t\in[t_0,+\infty)$ множество $M(t)$ непусто и компактно. Получены условия положительной инвариантности данного множества, равномерной устойчивости по Ляпунову и равномерной асимптотической устойчивости. Проведено сравнение с исследованиями других авторов, которые рассматривали вопросы устойчивости нулевого решения для аналогичных систем.
Ключевые слова:управляемые системы с импульсным воздействием, функции Ляпунова, дифференциальные включения.