Аннотация:
В работе рассматриваются нелинейные дифференциальные уравнения $n$-го порядка с младшей производной. При помощи принципа сжимающих отображений исследуется асимптотическая эквивалентность решений этих уравнений в случае экспоненциальной эквивалентности их правых частей. Полученные достаточные условия асимптотической эквивалентности решений являются продолжением и обобщением результатов, изложенных в предыдущих работах автора. Приводится результат, описывающий асимптотическое поведение всех стремящихся к нулю на бесконечности решений дифференциального уравнения второго порядка с регулярной нелинейностью типа Эмдена–Фаулера и нулевой правой частью, возникающего при исследовании квазилинейных эллиптических уравнений. На его основе описывается асимптотическое поведение решений соответствующего уравнения с ненулевой правой частью.