RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки // Архив

Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 2018, том 28, выпуск 2, страницы 176–192 (Mi vuu629)

Эта публикация цитируется в 1 статье

МАТЕМАТИКА

On $\mathcal{L}$-injective modules

[Об $\mathcal{L}$-инъективных модулях]

A. R. Mehdi

Department of Mathematics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq

Аннотация: Пусть $\mathcal{M}=\{(M,N,f,Q)\mid M,N,Q\in R\text{-Mod}, \,N\leq M,\,f\in \text{Hom}_{R}(N,Q)\}$ и пусть $\mathcal{L}$ - непустой подкласс $\mathcal{M}.$ Jirásko ввел понятие $\mathcal{L}$-инъективного модуля как обобщение инъективного модуля: модуль $Q$ называется $\mathcal{L}$-инъективным, если для каждого $(B,A,f,Q)\in \mathcal{L}$ существует гомоморфизм $g\colon B\rightarrow Q$ такой, что $g(a)=f(a)$ для всех $a\in A$. Целью данной работы является изучение $\mathcal{L}$-инъективных модулей и некоторых связанных с ними понятий. Даны некоторые характеристики $\mathcal{L}$-инъективных модулей. Приводится версия критерия Бэра для $\mathcal{L}$-инъективности. В качестве обобщений $M$-инъективных модулей вводятся понятия $\mathcal{L}$-$M$-инъективного модуля и $s$-$\mathcal{L}$-$M$-инъективного модуля и даются некоторые результаты о них. Дана наша версия обобщенного критерия Фукса. Получены условия, при которых класс $\mathcal{L}$-инъективных модулей замкнут относительно прямых сумм. Наконец, мы вводим и изучаем понятие $\sum$-$\mathcal{L}$-инъективности как обобщение $\sum$-инъективности и $\sum$-$\tau$-инъективности.

Ключевые слова: инъективный модуль, обобщенный критерий фукса, наследственная теория кручения, $t$-плотный, прерадикал, естественный класс.

УДК: 512.553.3

MSC: 16D50, 16D10, 16S90

Поступила в редакцию: 03.02.2018

Язык публикации: английский

DOI: 10.20537/vm180204



Реферативные базы данных:


© МИАН, 2024