Аннотация:
В этой статье мы предлагаем новый метод численной аппроксимации для решения единственного решения нелинейного интегро-дифференциального уравнения Вольтерра. Нас интересует особая форма этого уравнения, в которой производная искомого решения появляется под знаком интеграла нелинейным образом. Наше видение основано на двух разных подходах: мы используем метод Нистрёма для преобразования интеграла в конечную сумму, используя формулу численного интегрирования, затем мы используем метод численной обратной разностной производной для приближения к производной нашего решения. Такое сопоставление двух разных методов, первого результата численной обработки интегральных уравнений и второго результата численной обработки дифференциальных уравнений, дает новую нелинейную систему для приближения к решению нашего уравнения. Мы показываем, что система имеет единственное решение и что это численное решение идеально сходится к нашему решению. Раздел посвящен численным тестам, в которых мы показываем эффективность нашего нового видения по сравнению с двумя методами,
основанными только на численном интегрировании.