Аннотация:
Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.
Ключевые слова:внутренние задачи Дирихле и Неймана, уравнение Гельмгольца, многоугольник произвольной формы, барицентрический метод, метод Галёркина, барицентрические координаты, оценка сходимости.