Аннотация:
Рассматривается задача Коши для уравнений Навье–Стокса над полосой ${\mathbb R}^3 \times [0,T]$ с временем $T>0$ в пространственно-периодической постановке. Доказывается, что задача индуцирует открытые инъективные отображения ${\mathcal A}_s\colon B^{s}_1 \to B^{s-1}_2$, где $B^{s}_1$, $B^{s-1}_2$ суть элементы шкал специально построенных функциональных пространств Бохнера–Соболева, параметризованных индексом гладкости $s \in \mathbb N$. Наконец, мы доказываем, что отображение ${\mathcal A}_s$ сюръективно тогда и только тогда, когда прообраз ${\mathcal A}_s ^{-1}(K)$ любого предкомпактного множества $K$ из образа отображения ${\mathcal A}_s$ ограничен в пространстве Бохнера $L^{\mathfrak s} ([0,T], L ^{{\mathfrak r}} ({\mathbb T}^3))$ с показателями Ладыженской–Проди–Серрина ${\mathfrak s}$, ${\mathfrak r}$.