Аннотация:
В работе изучаются некоторые вопросы приближения почти-периодических функций Степанова от частичных сумм ряда Фурье и средними Марцинкевича, когда показатели Фурье рассматриваемых функций имеют предельную точку в бесконечности. Исследуется вопрос об отклонении заданной функции $f(x)$ от еe частичных сумм ряда Фурье, в зависимости от скорости стремления к нулю величины наилучшего приближения тригонометрическим полиномом ограниченной степени. Здесь, при определении коэффициентов Фурье вместо рассматрываемой функции принимается некоторая произвольная, вещественная, непрерывная функция $\Phi_\sigma(t)$$(\sigma>0)$, которая в заданном интервале равна единице, а в остальных случаях — равна нулю. Далее аналогично устанавливается оценка сверху величины отклонения почти-периодической в смысле Степанова функции средними Марцинкевича.
Ключевые слова:почти-периодические функции Степанова, ряды Фурье, показатели Фурье, предельная точка в бесконечности, средние Марцинкевича, тригонометрический полином, наилучшее приближение.