RUS  ENG
Полная версия
ЖУРНАЛЫ // Математическая физика и компьютерное моделирование // Архив

Математическая физика и компьютерное моделирование, 2018, том 21, выпуск 1, страницы 11–17 (Mi vvgum219)

Эта публикация цитируется в 3 статьях

Математика и механика

Сходимость рядов нечетких чисел с унимодальной функцией принадлежности

И. В. Гермашевa, Е. В. Дербишерb, В. Е. Дербишерb, Н. Ю. Куликоваc

a Волгоградский государственный университет
b Волгоградский государственный технический университет
c Волгоградский государственный социально-педагогический университет

Аннотация: При решении прикладных задач методами нечеткой математики часто возникает необходимость проводить операции над нечеткими числами. Вычисление таких выражений требует довольно сложных манипуляций и существенных усилий. Например, использование $L-R$ нечетких чисел позволяет получить формулы для вычисления сложения и вычитания нечетких чисел, но умножение и деление удается вычислять лишь приближенно. Для реализации арифметики трапециевидных чисел используются $t$-нормы и интервальная математика. Представлены нечеткие числа с унимодальной функцией принадлежности, нашедшие применение при нечетком анализе таких предметных областей, как экология, химическая технология. Знание о поведении таких числовых рядов позволит более эффективно анализировать подобные математические модели. Поскольку операция сложения ассоциативна, то это позволяет эффективно анализировать числовые ряды. Рассмотрена задача о сходимости ряда нечетких чисел с унимодальной функцией принадлежности. Получены формулы для вычисления арифметических операций с последовательностями нечетких чисел. Обобщена формула сложения для последовательности нечетких чисел. Исследована сходимость рядов нечетких чисел. При этом получены условия, при которых ряд расходится. Установлено, что вычисления с большим числом нечетких данных может приводить к неопределенности результата. Это обусловлено тем, что сумма ряда имеет функцию принадлежности, тождественно равную единице. Это означает полную неопределенность результата и позволяет сделать заключение о расходимости ряда. Полученные результаты для вычисления арифметических операций позволяют применять нечеткий анализ для исследования сложных систем, например, в экологии или в химической технологии. Предлагаемый подход носит достаточно общий характер и может применяться для довольно широкого класса исследований с применением методов нечеткого анализа. В этом случае имеет смысл ограничить длину последовательности нечетких чисел исходя из компромисса точности вычислений и степени неопределенности результата.

Ключевые слова: нечеткие числа, арифметические операции, ассоциативность, ряд нечетких чисел, сходимость ряда.

УДК: 517.521.1
ББК: 22.161

DOI: 10.15688/mpcm.jvolsu.2018.1.2



© МИАН, 2024