Аннотация:
Исследованию решений уравнения минимальных поверхностей, заданных над неограниченными областями, посвящены многие работы (см., например, [1; 2; 4–6]), в которых изучались различные задачи асимптотического поведения минимальных поверхностей.
В настоящей работе объектом исследования является изучение предельного поведения гауссовой кривизны минимальной поверхности на бесконечности. Используется традиционный для решения подобного вида задач подход, заключающийся в построении вспомогательного конформного отображения, соответствующие свойства которого и изучаются.
Ключевые слова:уравнения минимальных поверхностей, гауссова кривизна, асимптотическое поведение, голоморфная функция, изотермические координаты, голоморфная в метрике поверхности функция.