RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2018, том 10, выпуск 1, страницы 12–20 (Mi vyurm361)

Математика

Вариационный метод решения коэффициентной обратной задачи для эллиптического уравнения

Р. К. Тагиев, Р. С. Касымова

Бакинский государственный университет, г. Баку, Азербайджан

Аннотация: Одним из основных типов обратных задач для уравнений с частными производными являются задачи, в которых подлежат определению коэффициенты уравнений или величин, входящих в них, по некоторой дополнительной информации. Такие задачи называют коэффициентными обратными задачами для уравнений с частными производными. Обратные задачи для уравнений с частными производными могут быть поставлены в вариационной форме, т. е. как задачи оптимального управления соответствующими системами. Рассматривается вариационная постановка одной коэффициентной обратной задачи для двумерного эллиптического уравнения с дополнительным интегральным условием. При этом управляющая функция входит в коэффициент при решении уравнения состояния и является элементом пространства квадратично суммируемых по Лебегу функций. Целевой функционал составлен на основе дополнительного интегрального условия. Граничные условия для уравнения состояния являются смешанными, т. е. в одной части границы задано второе краевое условие, а в другой части первое краевое условие. Под решением краевой задачи при каждом фиксированном управляющем коэффициенте понимается обобщенное решение из пространства Соболева. Исследованы вопросы корректности рассматриваемой коэффициентной обратной задачи в вариационной постановки. Доказано, что рассматриваемая задача корректно поставлена в слабой топологии пространства управляющих функций, т. е. множество оптимальных управлений не пусто, слабо компактно и любая минимизирующая последовательность задачи слабо сходится к множеству оптимальных управлений. Кроме того, доказана дифференцируемость по Фреше целевого функционала и найдена формула для его градиента. Установлено необходимое условие оптимальности в виде вариационного неравенства.

Ключевые слова: эллиптическое уравнение, обратная задача, интегральное условие, вариационный метод.

УДК: 517.95

Поступила в редакцию: 18.05.2017

DOI: 10.14529/mmph180102



Реферативные базы данных:


© МИАН, 2024