RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2021, том 13, выпуск 1, страницы 5–13 (Mi vyurm468)

Эта публикация цитируется в 2 статьях

Математика

Устойчивость факторизационных множителей канонической факторизации Винера–Хопфа матриц-функций

Н. В. Адукова, В. Л. Дильман

Южно-Уральский государственный университет, г. Челябинск, Российская Федерация

Аннотация: Задача факторизации Винера-Хопфа матриц-функций является одной из самых востребованных задач математического анализа. Однако, ее применение сдерживается тем, что к настоящему времени в общем случае нет методов конструктивного построения факторизации. Кроме того, задача является, вообще говоря, неустойчивой, то есть малое возмущение исходной матрицы-функции может привести к изменению целочисленных инвариантов задачи (частных индексов), а факторизационные множители исходной и возмущенной матриц-функций могут быть не близкими. Это означает, что зависимость факторов от возмущения не является непрерывной. Положение осложняется тем, что факторизационные множители находятся неединственным образом, и потому перед сравнением факторизаций их требуется пронормировать. Эта задача также не решена в общем случае. В известной теореме М.А. Шубина проблема нормировки обходится следующим образом: в ней доказано, что если исходная и возмущенная матрицы-функции имеют одинаковые наборы частных индексов, то существуют их факторизации с близкими факторизационными множителями. Ясно, что в данном случае провести эффективную оценку степени их близости нельзя. В предлагаемой работе теорема М.А. Шубина уточняется для случая, когда исходная матрица-функция допускает каноническую факторизацию. В этом случае указано, как должны быть пронормированы канонические факторизации двух достаточно близких матриц-функций для того, чтобы их факторизационные множители также были достаточно близки. Главным результатом работы является получение явных оценок, в терминах факторизации исходной матрицы-функции, для абсолютной погрешности при приближенном вычислении факторов. Оценки получены с использованием техники теплицевых операторов.

Ключевые слова: факторизация Винера-Хопфа, матрица-функция, частные индексы, нормировка факторизации, непрерывность факторов, оценка погрешности.

УДК: 517.544.8

Поступила в редакцию: 19.01.2021

DOI: 10.14529/mmph210101



© МИАН, 2024