RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математика. Механика. Физика» // Архив

Вестн. Южно-Ур. ун-та. Сер. Матем. Мех. Физ., 2022, том 14, выпуск 1, страницы 13–26 (Mi vyurm507)

Эта публикация цитируется в 1 статье

Математика

Об идентификации коэффициента теплообмена в слоистой среде

В. А. Белоногов

Югорский государственный университет, г. Ханты-Мансийск, Российская Федерация

Аннотация: Рассматривается вопрос о корректности в пространствах Соболева обратных задач об определении коэффициента теплообмена на границе раздела сред, входящего в условие сопряжения типа неидеального контакта. В цилиндрической пространственной области рассматривается параболическое уравнение второго порядка. Область делится на две подобласти, на общей части границы которых задается условие сопряжения. Коэффициент теплообмена, входящий в условие сопряжения, ищется в виде конечного отрезка ряда с неизвестными коэффициентами Фурье, зависящими от времени. Уравнение дополняется краевыми условиями общего вида и начальными условиями, а также условиями переопределения. Условия переопределения — значения решения в некотором наборе точек, лежащих в пространственной области. При естественных условия гладкости на данные и расположение точек замеров показана локальная по времени теорема существования и единственности решений. Полученное решение является регулярным, т. е. все обобщенные производные, входящие в уравнение, суммируемы с некоторой степенью и уравнение выполняется почти всюду. Метод является конструктивным, и на основе предложенного подхода возможно построение численных методов решения задачи. Доказательство основано на получаемых априорных оценках и теореме о неподвижной точке.

Ключевые слова: обратная задача, задача сопряжения, коэффициент теплопередачи, параболическое уравнение, тепломассоперенос.

УДК: 517.95

Поступила в редакцию: 04.01.2022

DOI: 10.14529/mmph220102



© МИАН, 2024