Аннотация:
Рассматривается вопрос о корректности в пространствах Соболева обратных задач об определении коэффициента теплообмена на границе раздела сред, входящего в условие сопряжения типа неидеального контакта. В цилиндрической пространственной области рассматривается параболическое уравнение второго порядка. Область делится на две подобласти, на общей части границы которых задается условие сопряжения. Коэффициент теплообмена, входящий в условие сопряжения, ищется в виде конечного отрезка ряда с неизвестными коэффициентами Фурье, зависящими от времени. Уравнение дополняется краевыми условиями общего вида и начальными условиями, а также условиями переопределения. Условия переопределения — значения решения в некотором наборе точек, лежащих в пространственной области. При естественных условия гладкости на данные и расположение точек замеров показана локальная по времени теорема существования и единственности решений. Полученное решение является регулярным, т. е. все обобщенные производные, входящие в уравнение, суммируемы с некоторой степенью и уравнение выполняется почти всюду. Метод является конструктивным, и на основе предложенного подхода возможно построение численных методов решения задачи. Доказательство основано на получаемых априорных оценках и теореме о неподвижной точке.
Ключевые слова:обратная задача, задача сопряжения, коэффициент теплопередачи, параболическое уравнение, тепломассоперенос.