Аннотация:
Посвящена поиску конструктивных аналитических выражений корней алгебраических уравнений третьей-шестой степени через коэффициенты уравнений. Получены соотношения для коэффициентов, при которых корни уравнений представляются наиболее просто, например, рационально. Даны рациональные выражения для кратных корней. Найдено условие, при котором полином шестой степени в каноническом виде представим произведением полиномов третьей степени в каноническом виде. Особое внимание уделялось символьному выражению корней уравнений через квадратные радикалы из коэффициентов. Предложен способ решения уравнений с помощью определяющих (порождающих, связанных с исходным) уравнений. Все представленные разложения справедливы для полиномов с произвольными комплексными коэффициентами.