Аннотация:
Рассматривается возмущенный сингулярный обыкновенный дифференциальный оператор Чебышёва первого рода с непрерывным запаздыванием. Для произвольной числовой последовательности мало отличающейся от последовательности собственных чисел невозмущенного оператора, ставится задача нахождения оператора возмущения, содержащего непрерывное запаздывание. Доказывается теорема существования такого оператора. Построен и обоснован алгоритм нахождения функции запаздывания в виде ряда Фурье. Обоснование алгоритма опирается на теорию регуляризованных следов.
Ключевые слова:регуляризованный след, сингулярный обыкновенный дифференциальный оператор, собственные числа.