RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2013, том 6, выпуск 2, страницы 25–39 (Mi vyuru17)

Эта публикация цитируется в 10 статьях

Математическое моделирование

Stochastic Leontieff type equations and mean derivatives of stochastic processes

[Стохастические уравнения леонтьевского типа и производные в среднем случайных процессов]

Yu. E. Gliklikha, E. Yu. Mashkovb

a Voronezh State University, Voronezh, Russian Federation
b Kursk State University, Kursk, Russian Federation

Аннотация: Стохастические дифференциальные уравнения леонтьевского типа мы понимаем как специальный класс стохастических дифференциальных уравнений в форме Ито, у которых в левой части имеется вырожденный постоянный линейный оператор, а в правой части — невырожденный постоянный линейный оператор. Также в правой части имеется слагаемое, зависящее только от времени. Его физический смысл — входящий сигнал в устройство, описываемое указанными выше операторами. В статьях А. Л. Шестакова и Г. А. Свиридюка подобные уравнения использованы для описания динамически искаженных сигналов. Переход к стохастическим дифференциальным уравнениям возникает при необходимости учета помех. Отметим, что для исследования решений таких уравнений необходимо использовать производные произвольного порядка от сигнала и от помех. В этой статье для дифференцирования помех мы применяем аппарат так называемых производных в среднем по Нельсону от случайных процессов. Это позволяет при исследовании не использовать аппарат теории обобщенных функций. Мы даем краткое введение в теорию производных в среднем, исследуем преобразование уравнений к каноническому виду и находим формулы для решений в терминах производных в среднем винеровского процесса.

Ключевые слова: производная в среднем, текущая скорость, винеровский процесс, уравнение леонтьевского типа.

УДК: 517.9+519.216.2

MSC: 60H30, 60H10

Поступила в редакцию: 20.02.2013

Язык публикации: английский



© МИАН, 2024