Аннотация:
Теория уравнений Соболева была предметом интереса многих исследователей последние годы, при этом много внимания уделялось детерминированным уравнениям и системам. Тем не менее, существуют также математические модели, содержащие случайные возмущения, такие как белый шум. Новая концепция «белого шума», первоначально построенная для конечномерных пространств, в данной работе распространяется на случай бесконечномерных пространств. Основная цель заключается в разработке стохастической теории уравнений cоболевского типа высокого порядка и предоставлении некоторых практических приложений. Основная идея состоит в том, чтобы построить пространства «шумов», используя производную Нельсона–Гликлиха. Абстрактные результаты, касающиеся начально-конечных задач для уравнений cоболевского типа высокого порядка, применяются к математической модели Буссинеска–Лява с аддитивным «белым шумом». Использован такой известный метод теории уравнений cоболевского типа, как метод фазового пространства, заключающийся в редукции сингулярного уравнения к регулярному, определенному на некотором подпространстве исходного пространства, понимаемом как фазовое пространство.