Аннотация:
Одним из подходов решения задачи восстановления искаженного входного сигнала по регистрируемым выходным данным датчика является задача оптимального динамического измерения – модель Шестакова – Свиридюка. Эта модель является основой теории оптимальных динамических измерений и состоит из задачи минимизации разности значений виртуального наблюдения, полученного с помощью расчетной модели, и экспериментальных данных, обычно искаженных некоторыми помехами. В статье рассматривается модель Шестакова – Свиридюка оптимального динамического измерения при наличии помех разного вида. Основное внимание в статье обращено на предварительный этап исследования задачи оптимального динамического измерения, а именно на метод Пытьева – Чуличкова построения данных наблюдения, т.е. преобразования данных эксперимента для очистки их от помех в виде «белого шума», понимаемого как производная Нельсона – Гликлиха от многомерного винеровского процесса. Для использования этого метода используется априорная информация о свойствах функций, описывающих наблюдение.
Ключевые слова:оптимальное динамическое измерение, система леонтьевского типа, многомерный винеровский процесс, производная Нельсона – Гликлиха, алгоритм решения задачи.