RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование» // Архив

Вестн. ЮУрГУ. Сер. Матем. моделирование и программирование, 2021, том 14, выпуск 1, страницы 39–49 (Mi vyuru580)

Математическое моделирование

Стохастическое моделирование замкнутых кривых на плоскости

М. В. Куркина, В. В. Славский

Югорский государственный университет, г. Ханты-Мансийск, Российская Федерация

Аннотация: Наиболее универсальный метод имитационного моделирования – стохастическое моделирование. Первоначально Энрико Ферми в 1930-х годах в Италии, а затем Джон фон Нейман и Станислав Улам в 1940-х в Лос-Аламосе предложили использовать стохастический подход для аппроксимации многомерных интегралов в уравнениях переноса, возникших в связи с задачей о движении нейтрона в изотропной среде. После начала использования компьютеров произошeл большой прорыв, и этот метод стал применяться в самых разных задачах, для решения которых стохастический подход оказался более эффективным, чем другие математические методы. В данной работе изучается форма случайного выпуклого овала на плоскости и более общая задача форма случайной замкнутой кривой на плоскости, исследуется изопериметрическое отношение – отношение квадрата длины кривой к площади ограниченной кривой. Величина этого отношения в силу изопериметрического неравенства ограниченна и характеризует отклонение кривой от окружности. Определяется конечномерное многообразие замкнутых регулярных кривых на плоскости и его бесконечномерный аналог. Изучается вероятностные распределения изопериметрического отношения на них. Основной результат состоит в установлении аналитического закона вероятностного распределения отношения – как распределения Фреше являющиеся частным случаем обобщенного распределения экстремальных значений. Основным используемым методом является разложение Фурье опорной функции множества на плоскости и применение математических пакетов Mathematica и Matlab при стохастическом моделировании.

Ключевые слова: изопериметрическое отношения, распределения экстремальных значений.

УДК: 519.245

MSC: 00А71

Поступила в редакцию: 10.10.2020

DOI: 10.14529/mmp210103



© МИАН, 2024