Аннотация:
В работе представлен обзор результатов как аналитического исследования задач оптимального динамического измерения, так и результатов в области разработки алгоритмов численных методов для решения задач теории оптимальных динамических измерений. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решения задачи оптимального управления с минимизацией функционал штрафа, в котором оценивается расхождение выходящих моделируемого и наблюдаемого сигналов. Данная теория появилась как новый подход для восстановления динамически искаженных сигналов. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера – Сидорова. Первоначально математическая модель учитывала только инерционность устройства измерения, позже математическая модель стала учитывать возникающие в измерительном устройстве резонансы и деградацию устройства с течением времени. Последние результаты учитывают случайные помехи, и уже здесь сложилось несколько подходов: первый подход основан на производной Нельсона – Гликлиха, второй – на очищении наблюдаемого сигнала по методу Пытьева – Чуличкова, третий – на очищении наблюдаемого сигнала с использованием цифровых фильтров, например, Савицкого – Голея или одномерного фильтра Калмана.
Ключевые слова:математическая модель измерительного устройства, система леонтьевского типа, условия Шоуолтера – Сидорова, производная Нельсона – Гликлиха, Винеровский процесс, оптимальное динамическое измерение, наблюдение, метод Пытьева – Чуличкова.