Аннотация:
Исследуется семейство дифференциальных уравнений, возникшее в результате обобщения классических интегрируемых случаев динамики твердого тела. Исследуемая система допускает полиномиальные первые интегралы 4 и 6 степени. При определенных ограничениях на параметры семейства дифференциальные уравнения интерпретируются как уравнения движения твердого тела в центральном поле сил, идеальной жидкости, электрически заряженного тела. Проводится качественный анализ уравнений: находятся особые инвариантные множества различной размерности и исследуется их устойчивость по Ляпунову. Для анализа задачи используются обобщения метода Рауса – Ляпунова и программные средства компьютерной алгебры.
Ключевые слова:твердое тело, уравнения движения, первые интегралы, инвариантные множества, устойчивость, компьютерная алгебра.