Аннотация:
В работе рассматривается задача оптимального управления решениями одной неклассической задачи для уравнений Хоффа, заданных на конечном связном ориентированном графе. Данную задачу мы редуцируем к начально-конечной задаче для абстрактного уравнения соболевского типа, подобрав соответствующим образом функциональные пространства. Нами установлено существование и единственность сильного решения начально-конечной задачи для линейного уравнения соболевского типа. Показано существование и единственность оптимального управления решениями данной задачи. Полученные абстрактные результаты применены к одной линейной модели Хоффа на графе, и установлены существование и единственность решения задачи оптимального управления. В статье представлены результаты вычислительного эксперимента, основанного на полученных теоретических данных. Для построения приближенных решений используется метод Галеркина. В работе используются идеи и методы, разработанные Г. А. Свиридюком и его учениками.