Аннотация:
В работе рассмотрены схемы второго и четвертого порядков погрешности аппроксимации для решения задачи диффузии-конвекции. Для модельной начально-краевой задачи, в случае когда функции правой части и начального условия представимы конечными суммами рядов Фурье по тригонометрическому базису, исследована точность разностных схем. Установлено, что точность численного решения зависит от количества узлов приходящихся на половину длины волны, соответствующей наиболее высокочастотной гармонике в конечной сумме ряда Фурье, необходимой для описания поведения расчетных объектов. Получены зависимости погрешности аппроксимации диффузионных слагаемых разностными схемами второго и четвертого порядков точности от количества узлов. Выполнено сопоставление результатов расчета двумерной задачи диффузии-конвекции и задачи Пуассона на основе схем второго и четвертого порядков точности. В работе обоснована целесообразность перехода к схемам повышенного порядка точности при решении прикладных задач и из полученных оценок нетрудно получить численные значения выигрышей во времени счета при использовании схем повышенного порядка точности.