RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика» // Архив

Вестн. ЮУрГУ. Сер. Выч. матем. информ., 2012, выпуск 2, страницы 22–36 (Mi vyurv124)

Эта публикация цитируется в 1 статье

Вычислительная математика

Методы параллельного решения СЛАУ на системах с распределенной памятью в библиотеке Krylov

Д. С. Бутюгинab, В. П. Ильинa, Д. В. Перевозкинa

a Институт вычислительной математики и математической геофизики СО РАН
b Новосибирский государственный университет

Аннотация: Рассматривается подход к созданию итерационного black-box («черного ящика») параллельного решателя, использованный в библиотеке Krylov для систем линейных алгебраических уравнений (СЛАУ) с разреженными матрицами высокого порядка, возникающими при сеточных аппроксимациях многомерных краевых задач и представленными в сжатом строчном формате CSR. Предлагается вариант алгебраической одномерной декомпозиции СЛАУ. Алгоритм основан на обходе в ширину графа матрицы системы и позволяет привести ее к блочно-трехдиагональному виду. За основу алгебраического решателя системы взят аддитивный метод Шварца, который естественным образом ложится на архитектуру вычислительных систем с распределенной памятью. Полученные алгебраические системы в подпространстве следов, образованных переменными на внутренних границах подобластей, решаются с помощью обобщенного метода минимальных невязок. Вспомогательные системы в подобластях решаются с помощью прямого алгоритма PARDISO из библиотеки Intel MKL, использующего распараллеливание над общей памятью средствами OpenMP. Реализованные алгоритмы апробированы на численном решении ряда задач вычислительной математики, таких как задачи гидродинамики, диффузионно-конвективные уравнения, задачи электромагнетизма и др. Приведенные результаты численных экспериментов демонстрируют эффективность предлагаемых решений для многопроцессорных вычислительных систем с распределенной памятью.

Ключевые слова: итерационные алгоритмы, методы декомпозиции областей, распараллеливание, алгебраические системы, разреженные матрицы, численные эксперименты, аддитивный метод Шварца.

УДК: 519.63

Поступила в редакцию: 05.11.2012

DOI: 10.14529/cmse120203



© МИАН, 2024