Аннотация:
Работа посвящена исследованию масштабируемости алгоритма Чиммино для решения систем неравенств. Данный алгоритм является типичным представителем класса итерационных проекционных алгоритмов для решения систем линейных уравнений и неравенств. Для аналитического анализа масштабируемости используется модель параллельных вычислений BSF (Bulk Synchronous Farm). Дается представление алгоритма Чиммино в виде операций над списками с использованием функций высшего порядка Map и Reduce. Выводятся аналитические оценки верхней границы масштабируемости алгоритма для многопроцессорных вычислительных систем с распределенной памятью. Приводятся данные о реализация алгоритма Чиммино над списками на языке С++ с использованием программного шаблона BSF и библиотеки параллельного программирования MPI. Демонстрируются результаты масштабных вычислительных экспериментов, выполненных на кластерной вычислительной системе. На основе экспериментальных результатов дается анализ адекватности оценок, полученных аналитическим путем с помощью стоимостных метрик модели BSF.
Ключевые слова:алгоритм Чиммино, система линейных неравенств, итерационный алгоритм, проекционный алгоритм, релаксация, модель параллельных вычислений BSF, оценка масштабируемости, эффективность распараллеливания, кластерные вычислительные системы.