Аннотация:
Интеллектуальный анализ данных направлен на извлечение доступных для понимания знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Феномен Больших данных является характерным признаком современного информационного общества. Процессы очистки и структурирования Больших данных приводят к образованию сверхбольших баз и хранилищ данных. Несмотря на появление большого количества NoSQL СУБД, основным инструментом управления базами данных по-прежнему остаются реляционные СУБД. Одним из перспективных направлений развития реляционных СУБД является внедрение в них средств интеллектуального анализа данных. Интеграция позволяет как избежать накладных расходов по экспорту анализируемых данных из хранилища и импорту результатов анализа обратно в хранилище, так и использовать при анализе данных системные сервисы, заложенные в архитектуре СУБД. В статье представлен обзор методов и подходов к решению задачи интеграции интеллектуального анализа данных в СУБД. Приводится классификация подходов к решению задачи интеграции интеллектуального анализа данных в СУБД. Представлены расширения языка баз данных SQL, обеспечивающие синтаксическую поддержку интеллектуального анализа данных в СУБД. Рассмотрены примеры реализации алгоритмов интеллектуального анализа данных на SQL и систем анализа данных в реляционных СУБД.
Ключевые слова:интеллектуальный анализ данных, реляционная СУБД, классификация, кластеризация, поиск шаблонов.