Аннотация:
Сформулирован и предложен метод построения направленного кубического сплайна для набора точек на плоскости. Проведено сравнение сплайна с $B$-сплайном Шёнберга, сплайнами Акимы и Катмулла–Рома. Показано, что для неравноотстоящих точек в сравнении с $B$-сплайном он дает значительно меньшие выбросы и практически лишен сильных изломов, которые свойственны сплайнам Акимы. Сплайн не дает петель и осцилляций, которые являются характерным недостатком параметрических сплайнов, в частности, эрмитовых, к числу которых относится сплайн Катмулла-Рома. Предложен быстрый метод оптимизации направляющего коэффициента сплайна, цель которой состоит в минимизации разрывов второй производной функции в ее промежуточных точках. Приведен пример оптимизации направленного сплайна третьего порядка. Также предложен направленный сплайн четвертого порядка, который лишен изломов. Сформулирован метод оптимизации направленного сплайна четвертого порядка, изложен алгоритм его оптимизации. Критериями оптимизации являются длина сплайна и наименьшее расстояние между его глобальными максимумом и минимумом. Показано, что в сравнении с сплайна Шёнберга направленный сплайн четвертого порядка имеет меньшие выбросы. Предложен метод автоматического притупления острых пиков кривых, который можно применять ко всем типам сплайнов.