RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика» // Архив

Вестн. ЮУрГУ. Сер. Выч. матем. информ., 2021, том 10, выпуск 4, страницы 5–25 (Mi vyurv266)

Эта публикация цитируется в 1 статье

Об одном методе восстановления пропущенных значений потокового временного ряда в режиме реального времени

М. Л. Цымблер, В. А. Полонский, А. А. Юртин

Южно-Уральский государственный университет (454080 Челябинск, пр. им. В.И. Ленина, д. 76)

Аннотация: Проблема восстановления пропущенных значений потокового временного ряда в режиме реального времени возникает в широком спектре практических приложений цифровой индустрии и интернета вещей. В статье предложен новый метод восстановления на основе совместного применения технологий интеллектуального анализа временных рядов и искусственных нейронных сетей. Метод предполагает три этапа восстановления: предварительная обработка данных, распознавание и реконструкция. Предварительная обработка предполагает однократную предварительную подготовку обучающих выборок данных. Распознавание и реконструкция реализуются с помощью нейронных сетей, обучаемых на указанных выборках. Предварительной обработке подвергается заранее сохраненный фрагмент потокового временного ряда безпропусков, в котором выполняется поиск набора типичных подпоследовательностей (сниппетов). Распознавание реализуется с помощью сверточной нейронной сети, на вход которой подается вектор из элементов временного ряда, предшествующих пропуску. Распознаватель выдает сниппет, на который более всего похожа входная подпоследовательность. Реконструкция реализуется с помощью рекуррентной нейронной сети,на вход которой подается конкатенация вывода распознавателя и вектора элементов ряда, предшествующих пропуску. Реконструктор выдает восстановленное значение. Представлены результаты экспериментов,показывающих высокую точность восстановления и преимущество предложенного метода перед аналогами.

Ключевые слова: временной ряд, восстановление пропущенных значений, режим реального времени, сверточная нейронная сеть, рекуррентная нейронная сеть, типичные подпоследовательности.

УДК: 004.032.26, 004.048

Поступила в редакцию: 03.09.2021

DOI: 10.14529/cmse210401



© МИАН, 2024