Аннотация:
В работе проводится сравнение двух целевых функций в задаче Прони аппроксимации данных измерений решениями линейного дифференциального уравнения заданного порядка с постоянными коэффициентами. Целевые функции различаются типом зависимости градиента от коэффициентов уравнения (линейная или со сложной нелинейностью) и являются 1) нормой невязки уравнения (линейный метод наименьших квадратов) или 2) нормой ошибки аппроксимации по А. Хаусхолдеру (вариационный метод идентификации). В последнем случае производится совместная оптимизация коэффициентов дифференциального уравнения и начальных условий решения. Для рассмотренных целевых функций вычислены константы локальной устойчивости решения задачи Прони с использованием локальных разложений зависимостей оптимальных коэффициентов уравнения как неявных функций от данных из условия равенства градиента целевой функции нулю. На этой основе предложен способ определения допустимой погрешности в данных задачи для обеспечения заданного уровня отклонения решения от истинного значения. На примере К. Ланцоша вычисления показателей экспонент по наблюдениям суммы трех экспонент с ошибками округления показано существенное преимущество (с точки зрения допустимой погрешности в данных) использования вариационной целевой функции. Адекватность используемых локальных показателей устойчивости для немалых возмущений проверяется численным экспериментом.
Ключевые слова:аппроксимация данных измерений, задача Прони, пример К. Ланцоша выделения показательных функций, локальная устойчивость, метод наименьших квадратов, вариационный метод.