Аннотация:
Важнейшими составляющими деталей машин являются подшипники качения, контроль за состоянием которых необходим, так как возможные дефекты в их конструкции могут привести к неправильной работе или общему выходу машин из строя. Современные решения по диагностике неисправностей подшипников обычно используют сложные процессы извлечения признаков, например, построение их изображений спектра Гильберта и дальнейшую мощную нейронную сеть для их классификации. В этой статье мы предлагаем простой, но, тем не менее, эффективный алгоритм решения данной задачи. Для выделения признаков из сигнала мы делим спектр сигнала на равные подинтервалы и находим максимум амплитуды и соответствующее значение частоты в каждом из них. В статье, на основе метода t-SNE, показано, что выделенные таким образом признаки, несмотря на свой небольшой размер, хорошо представляют разного типа сигналы. На втором этапе выделенные признаки поступают на вход простой нейронной сети классификатора. Предложенный метод обладает простотой в вычислительном отношении, как на этапе выделения признаков, так и на этапе обучения нейронной сети. Несмотря на это, метод дает 100% точность для всех типов сигналов на коротких данных из набора данных IMS.