RUS  ENG
Полная версия
ЖУРНАЛЫ // Вестник Южно-Уральского государственного университета. Серия «Вычислительная математика и информатика» // Архив

Вестн. ЮУрГУ. Сер. Выч. матем. информ., 2014, том 3, выпуск 2, страницы 5–19 (Mi vyurv34)

Вычислительная математика

О некоторых вариантах метода декомпозиции областей

В. П. Ильин, Д. В. Перевозкин

Институт вычислительной математики и математической геофизики СО РАН (Новосибирск, Российская Федерация)

Аннотация: Рассматриваются алгоритмы масштабируемого распараллеливания решения сверхбольших разреженных сеточных СЛАУ, представленных в универсальных сжатых форматах, в том смысле, что их реализация осуществляется без программных ограничений на порядки алгебраических систем и на количество используемых вычислительных узлов, процессоров и/или ядер.
Данная задача сводится к распределенному варианту алгебраической 3D-декомпозиции областей, в котором отсутствует чрезмерная расчетно-информационная нагрузка корневого процессора, т.е. все организуемые MPI-процессы, каждый из которых соответствует своей подобласти, являются практически равноправными. Вычислительный процесс состоит из двух основных этапов, первый из которых заключается в непосредственной автоматической декомпозиции, на основе анализа матричного портрета и формировании крупноблочного представления СЛАУ. Второй этап - это реализация крыловского итерационного алгоритма FGMRES (гибкого обобщенного метода минимальных невязок), использующего точное или приближенное обращение диагональных матричных блоков (многопоточное решение подсистем в подобластях с использованием средств OpenMP) с помощью прямого или итерационного метода соответственно.
Описываемые методы реализованы в составе библиотеки алгебраических решателей Krylov. В работе приводятся некоторые оценки используемых ресурсов и особенности параллельных вычислительных технологий. Эффективность разработанных алгоритмов иллюстрируется результатами численных экспериментов по решению характерных алгебраических задач на различных конфигурациях многопроцессорной вычислительной системы.

Ключевые слова: декомпозиция областей, матричный граф, распараллеливание алгоритмов, сеточные уравнения, разреженные СЛАУ, программные и вычислительные технологии.

УДК: 519.612

Поступила в редакцию: 10.04.2014



© МИАН, 2024