Аннотация:
В работе рассматриваются математические вопросы многообразных вычислительных технологий методов распараллеливания итерационных процессов крыловского типа для решения больших разреженных симметричных и несимметричных СЛАУ, возникающих при сеточных аппроксимациях многомерных краевых задач для систем дифференциальных уравнений. Характерным примером являются конечно-элементные приближения в газогидродинамических приложениях, где в каждом узле определены пять неизвестных функций, в силу чего СЛАУ имеет мелкоблочную структуру. Основой применяемых алгоритмов является гибкий метод обобщенных минимальных невязок FGMRES с динамическими предобуславливателями аддитивного типа, представляющий собой верхний уровень двухступенчатого итерационного алгоритма Шварца.
Для повышения производительности алгебраических решателей автором предлагается применение различных подходов: декомпозиции расчетной области с различными топологиями, типами краевых условий на смежных границах и размерами пересечений подобластей, методов грубосеточной коррекции и агрегации, дефляции и неполной факторизации матриц. Описываются унифицированные формулировки используемых алгоритмов, а также вопросы их вычислительной эффективности и масштабируемого распараллеливания на суперкомпьютерах гетерогенной архитектуры. Приводятся примеры технологических требований к особенностям программных реализаций библиотек параллельных алгоритмов для решения систем линейных алгебраических уравнений.